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Abstract--The objective of this work is to analyze high-temperature, high heat-flux hydrogen flows under 
a variety of boundary conditions, in particular wall-heat flux boundary conditions. Both laminar and 
turbulent flows are investigated. An enthalpy balancing scheme is formulated and implemented allowing 
accurate, fast converging solutions of turbulent flows with high wall-heat flux boundary conditions. The 

solutions obtained are assessed along with several correlations proposed in the literature. 

1. INTRODUCTION 
Accurate calculation of near-wall heat transfer is of 
great importance to the design and operation of high- 
temperature high heat-flux systems. Nuclear thermal 
rocket propulsion is a case in point and is the driving 
force behind this investigation. The nuclear thermal 
rocket is the next generation of propulsion system for 
deep space missions. In a nuclear rocket, the hydrogen 
propellant flows through the reactor core and becomes 
heated to temperatures approaching 3000 K. A good 
understanding of the heat-transfer mechanism for such 
flow devices is critical for their successful operation. 

Extensive work has been done in the field of laminar 
and turbulent-flow heat transfer in pipes. However, 
most of this work has been performed for cases in 
which conditions such as temperature and heat flux 
are not extreme. These studies were also normally 
confined to cases in which adiabatic and isothermal 
wall boundary conditions were used. The purpose of 
this study is to examine laminar and turbulent high- 
temperature, high heat-flux flows of hydrogen in a 
tube. Constant and variable wall-heat flux boundary 
conditions are specified in the analysis, as well as adia- 
batic and isothermal wall-boundary conditions. It is 
also intended to compare numerical results with the 
Nusselt number, calculated by using a number of com- 
mon mechanistic correlations. The primary emphasis 
of this comparative evaluation effort is on the entrance 
effect and also on the use of real gas properties. If the 
gas properties vary significantly with the temperature, 
careful attention needs to be paid to the treatment 
of real gas properties at high near-wall temperature 
gradients. 

It is generally known that, when computing fluid- 
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flow and heat-transfer problems, normal gradient 
boundary conditions may result in slow convergence. 
A method of enthalpy balancing is developed and 
implemented which vastly improves the convergence 
rate when specifying wall-heat flux boundary 
conditions. This is similar in principal to mass rebal- 
ancing where mass conservation at the outflow bound- 
ary is enforced. Mass rebalancing has been suc- 
cessfully implemented in a number of numerical 
schemes. A comprehensive discussion of this method 
can be found in ref. [1]. 

2. FORMULATION OF THE NUMERICAL 
ALGORITHM 

The present algorithm solves the thin-layer Navier- 
Stokes equations in which viscous effects are confined 
to thin-layer regions near the body surfaces. Viscous 
and heat conduction terms are represented by deriva- 
tives normal to the surface only. Streamwise viscous 
derivative terms and heat conduction are much 
smaller in magnitude, and can therefore be neglected. 

The Navier-Stokes equations may be written in 
two-dimensional conservation form as 

?,0 OF, + ~6, ~C~ 
~-  + ~-z ~-r + a '  = ~,~Vr +H '  (l) 
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NOMENCLATURE 

cp specific heat at constant pressure T 
Cv specific heat at constant volume u 
d diameter v 
e total energy per unit volume y 
h heat transfer coefficient z 
im,x total number of axial grid points 
Jmax total number of radial grid points 
k thermal conductivity, or turbulence 

model constant 
l pipe length 
M mass flow rate 
Nu Nusselt number, hd/k 
p pressure 
Pr Prandtl number, Cp#/k 
qc conductive heat flux Subscripts 
q~ wall heat flux 1 
Q total heat flux 2 
r radial position measured from the b 

centerline i 
R pipe radius j 
Re Reynolds number, ul/v t 
t time w 

temperature 
axial velocity, z-component 
radial velocity, r-component 
radial position measured from the wall 
axial position measured from the pipe 
entrance. 

Greek symbols 
heat balance correction factor 

/~ dynamic viscosity 
p density 
o0 heat balance relaxation factor 
leo[ magnitude of vorticity. 

inside wall boundary mesh point 
inside fluid boundary mesh point 
bulk conditions 
axial mesh point locations 
radial mesh point locations 
turbulent component 
wall conditions. 

and the viscous terms are 
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In the above formulation, p represents density, u and 
v are the velocity components in the z (axial) and r 
(radial) directions, respectively, qc is the conductive 
heat flux, p is the pressure, e represents the total energy 
per unit volume, and #T represents the total viscosity, 
i.e. molecular, #1, and eddy, #t, components. 

The algorithm used is based on MacCormack's pre- 
dictor/corrector scheme. It is a hybrid explicit/implicit 
method [2], employing a finite volume approach. 
Unlike the finite difference approach where mesh 
points are placed directly on the boundaries, the finite 
volume approach places volume-cell surfaces along 

the boundaries with the mesh points located at the cell 
centers a half-mesh spacing away. The finite volume 
formulation computes fluxes crossing the cell surfaces. 
This approach makes the implicit coefficient matrices 
more diagonally dominant, and thus easier to solve. 
This is an important factor when using line Gauss 
Seidel iteration to obtain a solution, as is the case 
here. Alternating the sweeping in the backward and 
forward streamwise directions improves the solution 
convergence. The hybrid implicit/explicit algorithm 
may be summarized as follows: 

Predictor 

A U T . =  - A t [ ~  + 
D+ " (Gi--G,.) ]" 

Ar HJ,~ 

I I+  /D+ "A 

At - ]" ~ r  
(6Gv)J,.j 6Ui.j = AU'/., 

Corrector 

A U,77T ,, ,+1 i.j = Ui.,+6Ui., (5) 
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I I + A t ( % A _  +D_.A+~Az ] 

+ A t ( ~ r  B_ +D_'B+~Ar ] 

,1 (?av a u ~ '  .+-7 o • = AUI4 +ASi./ 

AU~' +' t " U"+I +aU~.j ) (6) • = 7 ( U i , , +  i,/  . + 1  

where 

(1) superscripts n, n + l ,  and n + l  refer to the 
present, predicted and new solution values, 

(2) subscripts i and j represent mesh point 
locations, 

(3) AU represents the temporal change in the solu- 
tion during time interval At and is evaluated by a local 
explicit finite difference approximation, 

(4) D+, D_, and 5, represent forward, backward 
and central difference approximations, respectively, 

f a  U\ "+ i 
(5) A t t ~ 7 )  = 6 U  "+l, 

(6) A and B represent the Jacobian matrices, and 
S represents the similarity transforms used to diag- 
onalize the Jacobians. 

An algebraic grid generation scheme is employed, 
allowing clustering in both the radial and axial direc- 
tions. This ensures accuracy in the laminar sublayer 
adjacent to the wall, and improves the convergence by 
capturing the entrance effects with higher resolution. 

Due to specific interest in nuclear thermal rocket 
propulsion, hydrogen is used as the working fluid. A 
hydrogen properties package is incorporated into the 
computer code, allowing the real gas properties to be 
accurately accounted for. Interpolation techniques are 
applied to a large data base [3] to obtain specific values 
as required. The database is composed of two separate 
parts. The first uses data from the National Bureau 
of Standards (now National Institute of Standard & 
Technology) over a temperature range 13.8-3000 K. 
NASA simulated data makes up the second part, rang- 
ing from 3000 to 10 000 K. A simple equilibrium 
model is used to account for dissociation of hydrogen. 
This feature is critical for the present calculation since 
the properties vary substantially in the flow domain. 

Three categories of heat transfer boundary con- 
ditions are analyzed, an adiabatic surface, a constant 
or varying temperature surface, and a constant or 
varying heat flux surface. In this analysis the boundary 
conditions are not time dependent, but may vary from 
one axial location to another. Cases involving the 
heat-flux boundary condition, a Neumann-type 
boundary condition, proved difficult to solve at 
acceptable convergence rates. The method used for 
overcoming this problem will be discussed in the sec- 
tions which follow. A one-sided differencing scheme 

"f d 
,,- fluid 

side 

1 2 

f 
wall 

Fig. 1. Heat transfer boundary condition nomenclature. 

is used in deriving the boundary conditions shown 
below. The wall heat flux boundary condition is 
approximated using the wall-temperature gradient. As 
shown in Fig. 1, an extrapolation has been used at the 
solid boundary. The boundary conditions specified in 
the algorithm are as follows : 

ui., = - ui, 2 no slip condition (7) 

ui. 1 = - ui, 2 radial velocity condition (8) 

T , . ,  = 

f 2T~.w - T;,2 

Ti.2 + q-kw (ri.2 - r;,l) 

adiabatic condition 

specified wall temperature 

specified wall heat flux. 

(9) 

The solution procedure of the governing equations 
is of the iterative form. The residuals presented in this 
analysis are of the form shown in equation (10) below, 

imax Jmax 

2 2 ,/(<:_<,;,)2 
i = l j - - I  

Residual = (10) 
(imax) (Jmax) 

where U,"j and U~71 refer to the present and old solu- 
tion values, respectively. 

These residuals show the accuracy of the solution 
of the momentum and energy equations, as well as the 
rate of convergence of the governing equations. The 
residuals approach an asymptotic converged solution 
which is in the same order with the machine error. 
The flux imbalance across computational cells is also 
checked to ensure that convergence has been achieved. 

3. TURBULENCE MODELING 

The accurate modeling of near-wall turbulence is 
crucial to obtain accurate predictions for parameters 
such as heat-transfer coefficients. For  high Reynolds 
number flows in simple geometries (streamlined), with 
a proper use of constants the algebraic models exhibit 
good accuracy. However, if this analysis to be 
expanded to include intermediate or very high Reyn- 
olds number flows or flow in complex geometries, 
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further investigation of turbulence modeling is 
needed. 

The Baldwin-Lomax algebraic turbulence model 
[4] is used in this analysis. This model has the advan- 
tage of avoiding the necessity for finding the edge 
of the boundary layer. The effects of turbulence are 
simulated in terms of the eddy viscosity coefficient,/4. 

Near the wall the Prandtl-Van Driest formulation 
for turbulent viscosity is used, 

where 

/y+ \ - I  2 
("')i .... : pk2y ' l - e x p  ~AV) j '~i ( 1 1 )  

Io~1 = ~ r  - a z j  " 

In the outer region, away from the wall the eddy 
viscosity may be written as 

(#t) ..... = KCcpFwakcFueb(y) (12) 

Fwake = YmaxFmax ( 13 )  

where Fm,~ is the maximum value of F(y) in a radial 
profile, 

F(y)= yl~olI l -exp(-A~+)l  (14) 

and Ymax is the value ofy  at which this occurs, and 

= [1 C 6 - t  
FU~b(y) 

L • \ y m , x / J  " 

The constants are specified as follows : 

A + = 26 

k = 0.4 

K = 0.0168 

C~p = 1.6 

Ckl~b = 0.3. 

The selection of the inner and outer formulation is 
important. The minimum value of y (distance mea- 
sured from the wall), for which the two formulations 
give the same value, is known as the crossover point• 
For y values less than the crossover point value the 
inner equation is used, while for y values greater than 
the crossover point value the outer formulation is 
used. In the original Baldwin-Lomax turbulence 
model an additional equation for the calculation of 
F~ak~ is presented. However, for the applications in 
this study where there is no flow separation this wake 
formulation is not justified. 

Visbal and Knight [5] found the constants C~p and 
Ck~b to be dependent upon flow Mach number. For 
flows over the range 0 ~< M~ ~< 3 the constants varied 
by a factor of two. Should the flow be separated they 
found that errors may occur in the determination of 
the length scales. Granville [6] also studied the model 

constants. He formulated an equation for the vari- 
ation of Ck[eb with a modified Clauser pressure-gradi- 
ent parameter, for the variation of Cop with Ckk.b. A 
formula for the variation of the Clauser factor, k, with 
Reynolds number, was also presented. After analyzing 
these modifications the constants presented above 
were found to be adequate for the subsonic attached 
boundary-layer type flow studied here. 

4. THE METHOD OF ENTHALPY BALANCING 

The application of this method was necessary to 
obtain solutions at acceptable rates of convergence 
when using the heat flux boundary conditions. The 
method applies the fundamental principle that, at 
steady state, the total heat into a section must equal 
the total heat out of the section. The enthalpy balance 
is based upon a velocity and temperature field which 
are approaching the steady state, and the accuracy of 
the balance is limited by the accuracy of the develop- 
ing flow fields compared to these steady-state values. 
As the solution approaches steady state the accuracy 
improves. Once the steady-state flow has been 
achieved, the enthalpy balance no longer has any effect 
on the computation. The enthalpy balance serves only 
to accelerate the rate at which steady-state flow is 
achieved. In this analysis it is assumed that there is no 
heat generation. There is no reason, however, why this 
should not be added to the formulation if required. 

Applying the principle of an enthalpy balance, as 
shown in Fig. 2, where Q~ is the total heat flowing 
into the section, Q2 is the total heat added through 
the wall, and Q3 represents the total heat leaving the 
section, the following is true : 

Qi +Q2 = Q3- (16) 

This assumes the kinetic losses to be negligible, which 
is acceptable for the subsonic flows examined here. 
For cases in which these losses are not negligible, 
equation (16) may be simply extended. Expanding 
equation (16), 

Mcp ( ]Q~bulk - -  T1 bulk) = 2rcrlqw. (17) 

Assuming the bulk inlet temperature, T~bu~k, is known, 
then the only unknown is T3bu~k, the bulk exit tem- 
perature. The above equation may be applied over as 
many individual sections as is required, and may be 
written in integral form as follows : 

Ol ~ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  [ ) Q3 
i 

Fig. 2. Diagram showing heat flux nomenclature. 
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Hence, 

T'b°'k MCp d T = qw2xr dz. 
Ibulk 

(18) 

nB 21qw 
T3bul k = T3bul k --  + Tlbul k. (19) 

purTc,, 

The bulk temperature at the exit of the section may 
also be found using numerical integration. This inter- 
mediate bulk temperature, T~3b.~k, may be compared 
to the bulk temperature computed from the con- 
sideration of energy conservation. Since these two 
temperatures should be equal, they may be used to 
correct the wall temperature as follows : 

HB 
T3bulk 

8 - -  
T~b.lk 

T n~W = sT°! d. (20 )  

It was found that, when applying this correction 
factor, e, to the flow field, the sudden, sometimes large, 
change in the wall temperature caused an instability 
to occur which ultimately led to the code diverging. 
This follows from the "transient" nature of the solu- 
tion of the flow fields. If the flow field is insufficiently 
developed, the temperature corrections at the wall 
may not be dissipated into the flow quickly enough, 
resulting in a disproportionately large rise in wall tem- 
perature. Should this wall temperature far exceed the 
fluid temperature, a divergent computation may 
result. To compensate for this problem a relaxation 
factor was introduced which allowed the correction 
to be applied more gradually. This equation may be 
written as 

T~ °w = T~ '~+0~(~  - 1 )T° !  ~ (21)  

where eJ is the relaxation factor. The empirically 
evaluated relaxation factors varied from case to case. 
The larger the wall heat flux the lower the initial relax- 
ation factor, and the lower the Reynolds number the 
lower the initial relaxation factor. Successively larger 
relaxation factors were used within each computation 
until ~o = 1, at which point equations (20) and (21) 
are identical. It appeared that the best approach was 
to accelerate m to unity as quickly as possible, in 
order to obtain the fastest possible rate of convergence 
without causing the algorithm to diverge. In some 
instances over-relaxation was used on computations 
exhibiting a slow rate of convergence, even with 
enthalpy balancing. 

The enthalpy balance could be applied in two ways. 
Firstly, a total balance could be performed over the 
entire pipe, resulting in a large correction factor, since 
the error in the enthalpy balance is accumulated along 
the length of the pipe. This meant that care had to be 
taken in selecting the relaxation factors. The second 
option was to perform independent enthalpy balances 
over each axial segment, thereby avoiding the accumu- 
lated errors of total enthalpy balancing. Since the 
correction factor is now much smaller, only one or 

two relaxation factors need to be specified, and in 
some cases the use of a relaxation factor even became 
unnecessary. The method of independent enthalpy 
was preferred as this somewhat eliminated the diffi- 
culties in selecting the correct relaxation factors. 

5. NUSSELT NUMBER CORRELATIONS 

The evaluation of the heat-transfer mechanism was 
crucial in validating the results obtained using the 
newly developed enthalpy balancing scheme proposed 
here. Four Nusselt number correlations were com- 
pared with the numerical results, the Petukhov cor- 
relation [7], the Gnielinski equation [8], the Notter- 
Sleicher formulation [9], and the Karman-Boelter- 
Martinelli correlation [10]. These correlations are pre- 
sented in Table 1. 

The friction factor, f, in the relations presented in 
Table 1 is given by [11] 

f =  [1.58 In(Re) - 3.28]-2. (22) 

The correlations are presented for constant-prop- 
erty fully developed flows. They may be modified to 
capture the inlet flow characteristics and also the vari- 
able property characteristics. A property correction 
may be applied to the friction factor [11] as follows : 

/ I T  \--0.52 

J:lt ) • 

The Nusselt number may be modified in a similar way 
[12] as follows : 

Nu = Nu (24) 

where 

F/ = - -  (1Ogl0  Tw~ 1'4 ~ ]  +0.3. 

Another value which has been used with success is 
n = -0.55.  

Entrance effects may be accounted for [11] using 

l 2,'3 

Perkins and Worsoe-Schmidt [13] suggested the fol- 
lowing correction : 

0 7  ( wlO 
N u = N u [ l + ~ d  ) \Tbb/ J" (26) 

Combining the Nusselt number correlations with 
the corrections, the numerical results could be evalu- 
ated. 

6. RESULTS AND DISCUSSION 

The enthalpy balancing scheme was employed to 
accelerate the rate of convergence. Without this 
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Table 1. Nusselt number correlations 

Correlation Equation Range of applicability Error 

Petukhov 

Gnielinski 

Notter-Sleicher 

Karman-Boelter-M artinelli Nu = 

Re Pr(J~2) 
Nu = 04 < Re < 5 x 106 5-6% 

1.07+ 12.7(Pr 2/3 - l ) ( f /2)  ~'2 0.5 < Pr < 2000 
lid > 40 

(Re - 1000) Pr( f /  2 ) 
Nu = 2300 < Re < 5 x 106 _+ 10% 

1 + 12.7(Pr 2 3 -  1)(f/2) ~2 0.5 < Pr < 2000 
lid > 40 

Nu = 5+O.O16Re"Pr h 04 < Re < 10 6 

a = 0 . 8 8 - 0 . 2 4 / ( 4 + P r )  0.1 < Pr < 104 
b = 0.33+0.5e -°~pr I /d> 25 

Re P r , ~ f ~  04 < Re < 106 
083315Pr +5 In (5Pr+ 1) +2.5 In (Re,,/f/2/60)] 0.5 < Pr < 200 

lid > 60 

_+ 10% 

_+8% 

scheme it was not  possible to ob ta in  convergence of  
the energy equa t ion  within a reasonable  n u m b e r  of  
i terat ions,  as i l lustrated in Fig. 3. The convergence 
characteris t ics  are shown for a typical high-wall  heat-  
flux case studied in this analysis. A converged solution 
was ob ta ined  within 1200 i terat ions when  employing 
en tha lpy  balancing.  The "sp ikes"  in the t empera ture  
residual were a result  of  modifying the re laxat ion fac- 
tor  presented in equa t ion  (21). The influence of  the 
wal l - temperature  correct ion was more  noticeable in 
the t empera ture  residual,  since the correct ion was 
directly applied to the solut ion of  the energy equat ion.  
The  oscillation in the converged solut ion is typical for 

a predic tor /correc tor  type scheme as used here, and  is 
on  the order  of  machine  error  on  the S U N  system 
used in the computa t ions .  Unde r  precisely the same 
condit ions,  with  no enthalpy balancing,  the rate of  
convergence was significantly slower. Convergence 
was achieved within less than  hal f  the n u m b e r  of  iter- 
a t ions  using enthalpy balancing.  The effect of  the 
enthalpy balancing scheme on the convergence rate 
was dependent  upon  the Reynolds  number ,  Nussel t  
n u m b e r  and  M a c h  number .  The  higher  the rat io of  
the heat  flux to the flow rate, the more  significant the 
improvemen t  in the convergence rate using enthalpy 
balancing.  

I01 

I0 c 

10 a 

• ~ I0 "2 

|0.3 

10 .4 

~ ,  [ No Enthalpy Balancing] 

10 q 

10 "2 
-el 

] No Enthalpy Bal.ancing I ~ 10 "3 

104 

. . . .  t . . . .  , . . . .  , . . . .  , . . . .  , . . . .  10 "s 

0 200 400 600 800 1,000 1,200 
Number of Iterations 

Fig. 3. Comparison of convergence rate with and without enthalpy balancing for uniform wall-heat flux 
flow. 
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The slow rate of convergence without enthalpy bal- 
ancing could be attributed to the inefficiency of the 
numerically calculated rate of heat transfer via con- 
duction from the wall to the fluid. The enthalpy bal- 
ancing scheme served to accelerate this heat transfer 
mechanism, and hence the numerically calculated 
developing flow-field approached the steady-state 
solution more rapidly. By applying enthalpy bal- 
ancing it was possible to obtain solutions for Dirichlet 
and Neumann thermal boundary conditions within a 
similar number of iterations. 

One of the key purposes of this analysis was to 
validate the method of enthalpy balancing introduced 
above. A study of laminar flows provided a good 
starting point in achieving this goal. Figure 4 illus- 
trates the developing non-dimensional temperature 
profiles in a laminar pipe flow with a uniform wall- 
heat flux of 0.1 MW m -2, and an inlet Reynolds num- 
ber of 1100. The profiles were not fully-developed, but 
are consistent with those of Presler [14], i.e. the 
developing temperature profile gradient became 
steeper with fully-developed centerline values exceed- 
ing the Deissler profile [15] for heat input to the 
system. The Deissler profile refers to the simplified 
case under which constant properties are assumed for 
a fully-developed incompressible laminar flow, and 
the profile shown here is the resulting analytical solu- 
tion. The fully developed numerical result (FDNUM) 
with enthalpy balancing and constant fluid properties 
is also shown in Fig. 4. Since a compressible flow 
algorithm was used where density is treated as a 
dependent variable, it could not be made incom- 
pressible without significant modification to the code. 
A very low heat flux was used to obtain the result, 
causing only a slight axial variation in density. The 
Deissler profile differs only slightly from this solution 
which closely approximates the analytical solution. 
This case study illustrated the successful application 
of the enthalpy balancing scheme to laminar flows 
with wall-heat flux-boundary conditions. 

The next task was to apply the enthalpy balance 

to turbulent flows, and to examine the heat-transfer 
mechanisms of both the isothermal wall and wall-heat 
flux-boundary conditions. The isothermal wall flow 
presented here was for an inlet temperature of 1000 K 
and a constant wall temperature of 1800 K, with an 
inlet Reynolds number of 6.36 x 104. The wall heat 
flux flow presented was for a total inlet temperature 
of 300 K and a constant wall heat flux of 1 MW m- : ,  
with an inlet Reynolds number of 6.18 x 105. 

The isothermal wall fully developed turbulent pipe- 
flow velocity distribution is shown in Fig. 5. The cal- 
culated profile was compared to that of the "Law of 
the Wall" profile correlated by Spalding [16]. The 
y+ range selected illustrates the laminar sublayer, the 
buffer layer, and the turbulent flow regime. The com- 
puted result compares within 5% to Spalding's for- 
mulation. The experimental data of various inves- 
tigators exhibits a great deal of dispersion in this 
regime. With this in mind, the numerical result was 
found to be satisfactory. The modified Spalding result 
refers to a modification of Spalding's equation, and 
contains two additional terms in the equation's expan- 
sion. Spalding suggested that the use of additional 
terms should be investigated, but this argument was 
not developed. 

Figures 6 and 7 illustrate the temperature fields for 
the isothermal wall and specified wall-heat flux case 
introduced above. The extreme temperature gradients 
at the wall in the inlet region of the isothermal wall 
distribution were clearly visible. These temperature 
gradients decreased at successive downstream 
locations. The wall-heat flux temperature field was 
significantly different. The wall temperature gradient 
was virtually constant axially. The bulk temperature 
and wall temperature increased at approximately the 
same rate once fully developed for the wall heat flux 
case, while the bulk temperature approached the wall 
temperature in the isothermal wall case. These charac- 
teristics affected the Nusselt numbers. 

The calculated Nusselt numbers and selected Nus- 
selt number correlations are compared in Fig. 8 for 

1.8 

S 

[ , I/d = 5S.8 - ' ~ k . .  
I " De~.~ ,p , 'oa le  -m~% 

. L  . . . . . . . . . . .  , , ,  

1.5 

1.2 

0.9 

0.6 

0.3 

0 
0 0.1 0.2 0.3 0.4 0.5 

Normalized radial position 

Fig. 4. Non-dimensional radial temperature profiles. 
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20 

15 

. ,  

Present prediction 
• Spalding ~ e  - 
[] Modified Spalding • • • 

10 ° l01 lO 2 

y+=(y ( p / I )  irl)/v 

Fig. 5. Fully developed isothermal wall velocity distribution. 

Fig. 6. Temperature distribution for isothermal wall flow. 

~A ~ ~ 3 3 0  . ~........~ 340 

Fig. 7. Temperature distribution for uniform wall-heat flux 
flow. 

the isothermal wall turbulent flow. The four Nusselt 
number correlations shown in Table 1 were used for 
comparison with the numerical result. The cor- 
relations were corrected for axial distance, as well as 
for real gas properties. The Petukhov Nusselt number 
correlation compared closely with the presently com- 
puted values, differing by 2% at the exit. The shape 
of the axial Nusselt number profile may be explained 
by examining the temperature fields discussed above. 
The Nusselt number is calculated using the following 
equation : 

O T / O y  (27) 
N u  (Tw-- Tb) d. 

As already mentioned the temperature gradient was 
high at the inlet and so the rapidly decreasing tem- 
perature gradient was the dominant term initially, and 
hence the Nusselt number rapidly decreased. Down- 
stream of the entrance the decreasing denominator 
became dominant, resulting in the Nusselt number 
increasing. As the bulk temperature approached the 
wall temperature the calculated Nusselt number began 
to flatten out. 

The Nusselt numbers shown in Fig. 9 were for a 
constant wall heat flux of 5 MW m -2 and an inlet 
Reynolds number of 4.6 x 105. For this specified wall- 
heat flux case, the prediction followed the Petukhov 
and Gnielinski correlations in the downstream portion 
of the flow domain, while it followed the Karman-  
Boelter-Martinelli correlation more closely upstream. 
The shape of the Nusselt number profile may be 
explained by examining equation (27) above, relating 
conduction and convection effects. The temperature 
gradient at the wall was almost constant since the 
conductivity varied only slightly with temperature. 
However, (Tw- Tb), which was initially zero, rapidly 
increased before approaching a constant value as the 
flow became fully developed. This explained the con- 
tinuously decreasing Nusselt number. 

The original derivation of the Nusselt number cor- 
relations may offer some insight to the disagreement 
between the correlations themselves, and also the 
numerical result obtained in this study. All the cor- 
relations were formulated assuming constant gas 
properties, and a fully developed flow. A solution of 
the equations for heat transfer based on pressure drop 
result in a dependence of the exponent of the Reynolds 
number on the Prandtl number. The constants in the 
theoretical solution could then be adjusted to best fit 
experimental data. Prandtl was the first to formulate 
a relationship of this type. The Petukhov correlation 
represents an improvement on the Prandtl equation, 
following further analysis of experimental results. The 
Gnielinski correlation is an extension of the Petukhov 
correlation, following an extensive survey of exper- 
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Fig. 8. Nusselt number distributions for isothermal wall flow. 
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Fig. 9. Nusselt number distributions for wall-heat flux flow. 
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imental data. Gnielinski modified the Petukhov cor- 
relation to be applicable to lower Reynolds number 
flows as well as the original range specified by Petu- 
khov. This explains the close comparison of the results 
for the two correlations in this study. The Notter- 
Sleicher correlation was obtained from a numerical 
solution of the energy equation using a specified vel- 
ocity profile and eddy diffusivities, followed by an 
evaluation of experimental data. 

Property and axial distance corrections were 
applied to all the correlations used. These corrections 
are derived empirically. The accuracy in the entrance 
region and sublayer of experimental results is often 
questionable, especially under extreme conditions. 
The effects under extreme conditions are often simply 
extrapolated from less severe regimes. The accuracy 
of the property correction is also limited to fluids with 
similar properties to those of the fluids for which the 
correction was derived. Therefore, added to the error 
of the base correlations there is the error associated 
with correcting the correlations for axial distance and 
variable properties. Bearing these factors in mind it 

was not surprising that the numerical result obtained 
in this study did not exactly fit any one correlation, 
and that the most significant differences were in the 
entrance region. The temperature and heat flux in the 
two cases presented in Figs. 8 and 9 were extreme. 

The differences between the present prediction and 
the Nusselt number correlations can be attributed to 
the substantial variation in fluid properties caused by 
the high-temperature effects. 

7. CONCLUSIONS 

A detailed investigation of near-wall heat transfer 
in laminar and turbulent flow was performed with 
both Dirichlet and Neumann boundary conditions. 
The inherent difficulties in obtaining converged solu- 
tions with heat-flux boundary conditions were 
addressed, and an enthalpy balancing scheme was 
developed. The implementation of the enthalpy bal- 
ancing scheme allowed fast converging solutions to be 
obtained. This methodology allowed the convergence 
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of  isothermal  wall and  wall-heat  flux bounda ry  con- 
di t ion cases in a similar n u m b e r  of  i terat ions.  

As was expected, the heat  t ransfer  was found  to be 
highly dependen t  upon  the Reynolds  number ,  and  to 
a lesser extent on  the wall heat  flux. The difference in 
the heat  t ransfer  mechanisms  between isothermal  wall 
and  wall-heat  f lux-boundary  condi t ion  flows was 
explained by analyzing the wal l - temperature  gradients  
and  the wall to bulk tempera ture  difference. The 
efficiency of  the heat - t ransfer  mechan i sm was depen- 
dent  upon  the Reynolds  number .  The  Nussel t  n u m b e r  
increased with increasing Reynolds  number ,  while the 
magni tude  of  the wall-heat  flux affected the shape of  
the Nussel t  n u m b e r  profile. The flow development  was 
delayed for large wall-heat  fluxes. 

Near-wall  heat  t ransfer  in laminar  and  tu rbu len t  
flows was analyzed in detail, and  a convenient  me thod  
was formula ted  for ob ta in ing  fast converging numeri-  
cal solut ions of  flows with high wall-heat  flux bound-  
ary condit ions.  
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